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Summary

� Volume and surface area of chloroplasts and surface area of plasmodesmata pit fields are

presented for two C4 species, maize and sugarcane, with respect to cell surface area and cell

volume.
� Serial block face scanning electron microscopy (SBF-SEM) and confocal laser scanning

microscopy with the Airyscan system (LSM) were used. Chloroplast size estimates were much

faster and easier using LSM than with SBF-SEM; however, the results were more variable than

SBF-SEM.
� Mesophyll cells were lobed where chloroplasts were located, facilitating cell-to-cell connec-

tions while allowing for greater intercellular airspace exposure. Bundle sheath cells were cylindri-

cal with chloroplasts arranged centrifugally. Chloroplasts occupied c. 30–50% of mesophyll cell

volume, and 60–70% of bundle sheath cell volume. Roughly 2–3% of each cell surface area

was covered by plasmodesmata pit fields for both bundle sheath and mesophyll cells.
� This work will aid future research to develop SBF-SEM methodologies with the aim to better

understand the effect of cell structure on C4 photosynthesis.

Introduction

Photosynthesis research has often depended on microscopic obser-
vations. Some examples being the discovery of chloroplasts and
their thylakoid structures (reviewed by Staehelin & Paolillo, 2020),
or CO2 diffusion paths including stomata and intercellular airspace
(Blackman, 1895; Turrell, 1936), or discovery of C4 photosynth-
esis and the role of Kranz anatomy (Hatch & Slack, 1966).
Recently, three-dimensional (3D) leaf imaging has been high-
lighted as a current gap in the application of microscopy to photo-
synthesis research (Khoshravesh et al., 2022). Recent 3D images of
leaf cells including chloroplasts, mitochondria, and peroxisomes
have been published (Harwood et al., 2020), but these have mostly
been limited to species operating C3 photosynthesis. While there
are far fewer C4 species than C3, C4 species are valuable as both a
human food source and a bioenergy source (e.g. maize, sorghum,
and sugarcane), and for their role in the global carbon cycle
accounting for c. 23% of total global CO2 fixation (Still
et al., 2003). Hence, there is also much interest in understanding
and improving C4 photosynthetic traits (Leegood, 2013; von
Caemmerer & Furbank, 2016; Koester et al., 2021). The lack of
3D leaf images and analysis of C4 species is an important knowl-
edge gap in photosynthesis research.

C4 species differ from C3 species by using a carbon concentrat-
ing mechanism where CO2 is initially fixed into a four-carbon

molecule in mesophyll cells and transported to bundle sheath
cells where the four-carbon molecule is decarboxylated releasing
CO2 for fixation by Rubisco, the initial carbon fixing enzyme of
the C3 photosynthetic cycle (Leegood, 2002; Furbank, 2016). A
three-carbon molecule is then returned to the mesophyll to
replenish intermediates of the C4 cycle. This carbon concentrat-
ing mechanism increases the CO2 concentration around Rubisco
well above ambient CO2 levels, thus minimizing a competing
reaction of the Rubisco substrate Ribulose-1,5-bisphosphate
(RuBP) with O2, a reaction also catalyzed by Rubisco. The oxy-
genation of RuBP accounts for about a third of reactions cata-
lyzed by Rubisco in C3 species and is thought to be a wasteful
and costly process (Walker et al., 2016).

For plants using C4 photosynthesis, large metabolic pools are
thought to be required for diffusion between mesophyll and bun-
dle sheath cells (Leegood, 1985; Stitt & Heldt, 1985). Two fac-
tors that may influence metabolic pool size in C4 plants are
chloroplast volume and plasmodesmata area (Leegood, 2013;
Stitt & Zhu, 2014; von Caemmerer & Furbank, 2016). Current
photosynthesis research is often directed toward ensuring a sus-
tainable supply of food, fiber, and fuel (Zhu et al., 2022), and
identifying targets to redesign photosynthesis is a continuing
trend (Ort et al., 2015). While it may be possible to genetically
manipulate chloroplast volume and plasmodesmata area, basic
understandings of their 3D structure have yet to be explored and
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has been the subject of recent research efforts (Danila
et al., 2016, 2018, 2019; Harwood et al., 2020).

Chloroplasts are subcellular compartments where light is har-
vested to produce energy and reducing equivalents, and where
CO2 is fixed into organic molecules used for growth in photosyn-
thetic eukaryotes. Because of their importance, there has been
much interest in manipulating photosynthetic capacity by alter-
ing chloroplast size or structure (Glynn et al., 2007; Ren
et al., 2019). Altering chloroplast size has been shown to affect
photosynthetic capacity, chloroplast movement in response to
fluctuating light, and CO2 diffusion from the intercellular air
space to the site of carboxylation (Austin &Webber, 2005; Weise
et al., 2015; Dutta et al., 2017). However, when working on
higher plants, analysis is usually limited to 2D estimates and is
most often focused on C3 and not C4 species (Staehelin, 2003).

In C4 species, rapid metabolite transfer between bundle sheath
and mesophyll cells is critical for the C4 mechanisms
(Hatch, 1987). This rapid exchange of metabolites between the
cells is achieved mainly through plasmodesmata, the tubule-like
structures passing through the cell walls of adjacent cells, connect-
ing their cytoplasm (Gunning & Robards, 1976; Hatch, 1987).
Many plasmodesmata linking bundle sheath and mesophyll cells
have been observed in C4 species, clustered in groups called a pit
field, supporting the idea that large metabolite flux between the
two cell types is required (Evert et al., 1977; Hattersley & Brown-
ing, 1981). While some recent work has been made in quantifying
plasmodesmata, the previous efforts have not been made in propor-
tion to the surface area of the cell or included ‘bundle sheath-
bundle sheath’ connections (Danila et al., 2016, 2018, 2019).

Here, we want to establish a base line for chloroplast volume
and surface area, as well as plasmodesmata pit field surface area,
of C4 species and their relationship to the larger cell shape for
future work where chloroplast and plasmodesmata size is of inter-
est. Previous findings of C4 anatomical features are based on 2D
views or analysis. This may result in poor or biased information;
therefore, it is necessary to investigate the 3D geometry of chloro-
plasts, cells, and their components such as plasmodesmata for
improving accuracy of values and understanding of a ‘global
view’ (Théroux-Rancourt et al., 2017; Danila et al., 2018; Har-
wood et al., 2020). Because C4 species often have dimorphic
chloroplasts between bundle sheath and mesophyll cell types as
well as variable plasmodesmata pit field density, as the functional-
ity of the cells is different, it was important to view both bundle
sheath and mesophyll traits (Edwards et al., 2001; Mai
et al., 2020). Additionally, we compare chloroplast volume and
surface area estimates in maize (Zea mays) and sugarcane (Sac-
charum spp. Hybrids) using both serial block face scanning elec-
tron microscopy (SBF-SEM) and confocal laser scanning
microscopy with the Airyscan system (LSM).

Materials and Methods

Plant materials and growth conditions

Maize and sugarcane were selected as they are widely studied and
the two most agriculturally important C4 crop species in the world

(FAO, 2022). Maize (Zea mays L., cultivar ‘B73’) seeds were
planted in pots (30.16 cm diameter× 27.94 cm deep; Nursery Sup-
plies Inc.). Sugarcane (a hybrid of Saccharum officinarum L.× Sac-
charum spontaneum L., cultivar ‘CPCL02-0926’) was propagated by
nodes. All plants were fertilized with granulated fertilizer (Osmocote
Plus 13/13/13; The Scotts Co. LLC, Marysville, OH, USA), water-
soluble nutrient solution (Peter’s Excel 15-5-15; Everris NA Inc.,
Dublin, OH, USA), and iron chelate supplement (Sprint 330;
BASF Corp., Research Triangle Park, NC, USA) once every 4 wk.
Plants were grown in the glasshouse, with temperatures of c. 27°C
(day) and c. 16°C (night), 14-h day length, high-pressure sodium
lamps provided an additional 400 μmolm–2 s–1 photosynthetic
photon flux density at canopy level. Plants were rotated every week.
For maize, the youngest fully expanded leaves from three plants
were selected when plants were 4 wk old. For sugarcane, samples
were collected from the youngest fully expanded leaves of three 12-
wk-old plants. Leaf samples were taken midway along the leaves,
avoiding the large mid-vein. For sugarcane this was c. 40 cm from
the leaf tip, while for maize it was c. 10 cm from the tip.

Sample preparation for SBF-SEM

Leaf samples were prepared following the methodology of
Deerinck et al. (2010, 2018). Briefly, the 5 × 5 mm samples
were immersed in 0.15M cacodylate buffer (Ted Pella Inc., Red-
ding, CA, USA) pH 7.4 containing 2.5% glutaraldehyde (Elec-
tron Microscopy Sciences, Hartfield, PA, USA) and 2.5%
paraformaldehyde (Electron Microscopy Sciences) with 2 mM
calcium chloride at 35°C for 5 min, placed on ice and fixed for 2
h, washed three times for 5 min each in 0.15M cacodylate buffer
(Ted Pella Inc.) pH 7.4 containing 2 mM calcium chloride, post-
fixed in 3% potassium ferrocyanide in 0.3M cacodylate buffer
with 4 mM calcium chloride and 4% aqueous osmium tetroxide
(EMS) for 1 h under dark conditions, washed three times in
Milli-Q H2O for 5 min, treated with 1% thiocarbohydrazide
(TCH) solution for 20 min, and then washed three times in
Milli-Q H2O for 5 min, immersed in 2% osmium tetroxide
(OsT) for 30 min, washed three times in Milli-Q H2O for 5 min,
incubated in 1% uranyl acetate at 4°C for 24 h, washed three
times in Milli-Q H2O for 5 min, transferred into Walton’s
lead aspartate en bloc staining solution for 30 min at 60°C,
washed three times in Milli-Q H2O for 5 min, dehydrated using
ice-cold ethanol solutions of prepared 20%, 50%, 70%, 90%,
and 100% for 30 min at each concentration, placed in ice-cold
anhydrous acetone for 10 min, transferred into room temperature
anhydrous acetone for 10 min, treated for 2 h each at 25% Dur-
cupan™ ACM resin (Sigma-Aldrich) in acetone, 50%, 75%, and
100% for 24 h, mounted between liquid release agent-coated
glass slides (EMS) in 100% Durcupan™ ACM resin and put at
60°C for 48 h, released from slides and placed in a template with
100% Durcupan™ ACM resin for 48 h at 60°C.

Sample mounting and SBF-SEM imaging

Epoxy-embedded samples were mounted to aluminum pins
(Gatan Inc., Pleasanton, CA, USA) using silver epoxy (Ted Pella)
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and sputter coated with a thin layer of Au/Pd prior to block-face
imaging. Serial block-face imaging was accomplished using a
Sigma VP (Zeiss) equipped with a Gatan 3 View system (model:
3View2XP) and a nitrogen gas injection manifold (Zeiss model
346 061-9002-200). For this work, samples were imaged at 2.0
keV, using 50-nm cutting intervals, 1.0 nm pixel size (12 k × 12
k pixels), beam dwell time of 1.0 μs and a high vacuum chamber
pressure of c. 5 × 10–3 mbar. Following this method, c. 500
images were collected per sample.

Sample preparation and measurements using LSM

Sample preparation for LSM was conducted using a procedure
slightly modified from Pignon et al. (2019). Leaf samples were
cut in 5 mm × 5 mm sections, immediately immersed in water-
soluble glycols and resins (Tissue-Tek O.C.T. Compound;
Sakura Finetek Inc., Torrance, CA, USA) with a vinyl speci-
men cryomold (10 mm × 10 mm × 5 mm, Tissue-Tek Cryo-
mold; Sakura Finetek), placed on dry ice to solidify. Cross
sections of leaf samples were cut in 10-μm pieces by using a
cryostat (Leica CM3050 S; Leica Biosystems, Wetzlar, Ger-
many), placed on glass slides, treated with a membrane and cell
wall fluorescent dye solution (FM 1-43FX; Thermo Fisher
Scientific, Waltham, MA, USA) for 10 min, which was wiped
off, and treated with perfluorodecalin (Sigma-Aldrich) to
enhance confocal microscopy depth of penetration (Littlejohn
et al., 2010). Sample imaging was performed on a confocal laser
scanning microscope with Airyscan system (LSM 880 Airyscan;
Carl Zeiss AG) with a × 40 oil-immersion objective (×40 Plan-
Apochromat; Carl Zeiss AG). The cell wall staining was excited
with the 488-nm laser, and chlorophyll was excited with the
633-nm laser. Serial optical sections were obtained at 1-μm-
depth intervals (z-stack).

Image processing and analysis

Images obtained by SBF-SEM were aligned using the GATAN

MICROSCOPY SUITE 3 software (Gatan). After alignment, AMIRA

9.3 software (Thermo Fisher Scientific) was used to perform seg-
mentation by manually tracing regions of interest (i.e. bundle
sheath chloroplasts, plasmodesmata pit field area, and cell walls;
Supporting Information Fig. S1) except for mesophyll chloro-
plasts where the software worked well enough to select individual
chloroplasts through multiple z-slices. The mesophyll chloro-
plasts edges were manually cleaned as needed.

Plasmodesmata appear as a tubule penetrating the cell walls of
two adjacent cells often in a circular cluster, or pit field, contain-
ing many individual plasmodesmata (Fig. S2). The resolution of
our images was too low to measure individual plasmodesmata
(Fig. S3), so only pit field area was determined. The size of a pit
field was calculated as a 2D area on the surface of the cell wall
using the software. We divided plasmodesmata into three groups:
‘bundle sheath-bundle sheath’, ‘bundle sheath-mesophyll’, and
‘mesophyll-mesophyll’. While mesophyll connections to the epi-
dermal layer and bundle sheath connections to the vasculature
existed, they were not quantified in this study.

For SBF-SEM, only entire chloroplasts were analyzed for
volume (μm3) and surface area (μm2). Fifteen bundle sheath
chloroplasts and 98 mesophyll chloroplasts across three leaf sam-
ples of maize were analyzed, while 19 bundle sheath chloroplasts
and 242 mesophyll chloroplasts across three leaf samples of
sugarcane were analyzed. Because the software could identify
individual mesophyll chloroplasts relatively well, but not bundle
sheath chloroplasts, it took approximately the same amount of
time to trace the smaller number of bundle sheath chloroplasts as
it did the many mesophyll chloroplasts reported here. For esti-
mating cell volume, three bundle sheath cells and six mesophyll
cells across three leaf samples of each maize and sugarcane were
analyzed. To determine whether shrinkage occurred during sam-
ple processing, the diameter of sugarcane bundle sheath cells was
measured for both LSM and SBF-SEM images.

Images obtained from LSM were analyzed by using IMARIS 9.7
software (BitPlane Inc., Zürich, Switzerland). The IMARIS 9.7
software automatically identified unique fluorescent objects from
633 nm excitation (used for chlorophyll autofluorescence), which
removed the need for manual tracing; however, identified objects
were not always entire chloroplasts or single chloroplasts. This
likely led to under- and overestimates of chloroplast volume.
From LSM, 573 maize mesophyll chloroplasts and 285 sugarcane
mesophyll chloroplasts were analyzed.

To compare shapes (i.e. compare volume and surface area
measurements) of chloroplasts imaged by SBF-SEM, we chose to
present the data relative to two shapes, a triaxial ellipsoid and a
sphere. The volume of a sphere was calculated as

Volume ¼ 4

3
πr3,

where π is the ratio of any circle’s circumference to its diameter
(π≈ 3.14159) and r is the radius, or length from the center of the
circle to the perimeter. The surface area of the sphere was calcu-
lated as

Surface area ¼ 4πr2:

The volume of the ellipsoid was calculated as

Volume ¼ 4

3
π a b cð Þ,

where a, b, and c are the three lengths from the center of the ellip-
soid to the perimeter along each axis. The surface area of the
ellipsoid was estimated as

Surface area ≈ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
apbp þ apcp þ bpcp

3

p

r
,

where p≈ 1.6075 (Klamkin, 1971; Xu et al., 2009). The values
of b and c were held constant relative to a such that a= 2b= 6c;
for comparison in a sphere a= b= c. This relationship between
a, b, and c was not empirically derived or fit but was initially
approximated by viewing chloroplast images and settled on after
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comparisons of volume to surface area plots of chloroplasts. For
plots of volume-to-surface area, the values of a for both the
sphere and the ellipsoid were allowed to vary such that the result-
ing volumes included the range of measured chloroplasts. Calcu-
lations and plots were made in EXCEL for MICROSOFT OFFICE 365
(Microsoft, Redmond, WA, USA). An example of the two shapes
is also presented and was made in MATLAB (MathWorks, Natick,
MA, USA).

Statistical analysis

Bundle sheath and mesophyll chloroplast volume determined by
SBF-SEM were compared by t-test using PROC TTEST procedure
in SAS within species (SAS Institute Inc., Cary, CA, USA).

Results

SBF-SEM estimates of chloroplast volume and surface area

Bundle sheath and mesophyll chloroplasts of three maize and
three sugarcane plants were reconstructed based on SBF-SEM
images (Fig. 1; Table 1). Both maize and sugarcane had pre-
dominantly triaxial ellipsoid shaped chloroplasts in both the
bundle sheath and mesophyll cells (Figs 1, 2). The volume of
individual bundle sheath chloroplasts was approximately two-
to threefold larger than mesophyll chloroplasts (maize P =
0.01, sugarcane P = 0.03; Figs 2, S4; Table 1). The bundle
sheath chloroplast surface area to volume ratio was c. 3 m2

m–3 in maize and c. 2 m2 m–3 in sugarcane, and the

Fig. 1 Examples of maize (a–c) and sugarcane (d–f) images obtained from serial block face scanning electron microscopy (SBF-SEM) to calculate chloroplast
parameters. 3D image block of a leaf cross section comprised of c. 500 images (a, d). 3D visualization of a portion of a single bundle sheath cell with chloro-
plasts (b, e). 3D visualization of a portion of a mesophyll cell with chloroplasts (c, f). Bars, 10 μm.

Table 1 Volume and surface area of maize and sugarcane chloroplasts obtained from serial block face scanning electron microscopy (SBF-SEM) measurements.

Type

Volume (μm3) Surface area (μm2)

Mean Minimum Maximum Mean Minimum Maximum

Maize
Bundle sheath 40.5� 2.7 27.7 51.9 100.1� 5.7 76.1 126.5
Mesophyll 20.1� 0.7 8.7 37.6 52.4� 1.5 23.8 94.1

Sugarcane
Bundle sheath 86.2� 6.5 55.4 141.1 146.1� 11.4 97.0 252.4
Mesophyll 30.3� 0.8 13.4 52.6 73.3� 2.0 41.9 127.5

Data are means � SE.
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mesophyll chloroplast surface area-to-volume ratio was c. 3
m2 m–3 in both species. It should be noted that the ratio of
surface area to volume is not constant (Fig. 2).

LSM estimates of chloroplast volume and surface area

Laser scanning microscopy was used to estimate chloroplast
volume to compare with SBF-SEM. Tight packing of bundle
sheath chloroplasts made distinguishing individual chloro-
plasts difficult; therefore, only mesophyll chloroplast volume
was compared for these measurements (Fig. 3). The chloro-
plast volume estimated by LSM was more variable and larger
than that determined by the SBF-SEM method (Fig. 4). The
mean mesophyll chloroplast volume in maize was 56.7 μm3

when measured using LSM, ranging from 3.4 to 593.7 μm3

(Fig. 4; Table S1). The mesophyll chloroplast volume in
sugarcane was 197.3 μm3 on average, varying from 3.2 to
1652.5 μm3 (Fig. 4; Table S1). Given these wide volume
ranges, a subset of the chloroplast data is also presented
based on the expected sizes determined by SBF-SEM
(Fig. 4). Shrinkage appears to be possible during SBF-SEM
sample preparation when compared to LSM. The mean dia-
meter of sugarcane bundle sheath cells determined by SBF-
SEM was 0.664 times smaller than the mean from LSM
images (15.0 μm compared to 22.6 μm; Fig. S5). To correct
for the upper limit of what is considered a reasonable size of
chloroplast in the LSM images, we divided the largest mea-
sured chloroplast in the SBF-SEM data set by 0.29 (i.e.
0.6643, assuming equal shrinkage occurred in three dimen-
sions). This determined the upper limit of chloroplast
volume to be 130 μm3 in maize and 181 μm3 in sugarcane
for the LSM subset (Fig. 4).

SBF-SEM estimates of bundle sheath and mesophyll cell
properties

Bundle sheath cells showed a cylinder shape tapering off to one
side at the top and the bottom where two bundle sheath cells
were connected forming a column (Figs 1, 5, 6, S6). Bundle
sheath chloroplasts were mostly distributed in a centrifugal posi-
tion (located near mesophyll cells and away from vasculature).
Mesophyll cells had an atypical geometry, appearing to have a
central shaft with protruding lobes along the length. Lobes were
often filled with chloroplast and facilitated connections to neigh-
boring cells via plasmodesmata (Figs 1, 5). For size estimates,
there is the possibility of shrinkage during processing (Khoshra-
vesh et al., 2022). Here, bundle sheath cell diameters were c. 0.66
times smaller in SBF-SEM than LSM images (Fig. S5).

Due to the sampling depth of our images, we were not able to
view entire cells. The average observed volume of a maize bundle
sheath and mesophyll cell was c. 1600 μm3 (Table 2). In this
observable portion of maize cells, c. 25 chloroplasts were observed
per bundle sheath and mesophyll cell. On a volume-to-volume
comparison, 70.8% of the observed bundle sheath volume was
occupied by chloroplasts and 33.1% of observed mesophyll
volume was occupied by chloroplasts (Table 2). For sugarcane, the
average observable volume of a bundle sheath cell was c. 3000, and
c. 1000 μm3 for a mesophyll cell (Table 2). The average number
of chloroplasts per observable cell volume was c. 20 in both bundle
sheath and mesophyll cell types (Table 2). For sugarcane, we esti-
mate that 60.2% of bundle sheath cell volume is occupied by
chloroplasts and 49.6% of mesophyll cell volume is occupied by
chloroplasts. Bundle sheath and mesophyll cell wall thickness were
similar in maize. Sugarcane bundle sheath cells had much thicker
cell walls than the mesophyll cells (Table 3).

Fig. 2 Plot of chloroplast volume to surface area determined by serial block face scanning electron microscopy (SBF-SEM) for maize and sugarcane com-
pared with previously published values. Symbols are the mean for each species cell type with error bars showing �SE. Solid line shows the volume–surface
area of a triaxial ellipsoid. The dotted line shows the volume–surface area relationship of a sphere. Insets: (a) the example of ellipsoid shape (a= 2b= 6c),
and (b) the example of sphere shape (a= b= c).
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SBF-SEM estimates of plasmodesmata pit field area

For the portion of cells observed here, one bundle sheath cell
would connect laterally to two other bundle sheath cells and three
to five mesophyll cells. As bundle sheath cells are also connected
end to end (Fig. S6), it is assumed that each bundle sheath cell is
connected to four other bundle sheath cells in total. A single
mesophyll cell was observed to connect to one or two bundle
sheath cells and two or three other mesophyll cells. As the entire
cell was not observed, these estimates of cellular connections are
likely low.

In maize, plasmodesmata pit field area of ‘bundle sheath-
bundle sheath’ connections was 1.0% of the observed bundle
sheath cell surface area, ‘bundle sheath-mesophyll’ connections
was 1.9% (Table 3). The pit field area of ‘bundle sheath-
mesophyll’ connections was 0.9% of the mesophyll cell surface
area, ‘mesophyll-mesophyll’ was 1.2% (Table 3). Overall, 3% of
maize bundle sheath surface area was covered in plasmodesmata
pit fields and 2.2% of mesophyll cells were covered in plasmodes-
mata pit fields. In sugarcane, the total area of the cell covered in
plasmodesmata was 3%, the same as was observed in maize
(Table 3). However, sugarcane appeared to have more ‘bundle
sheath-mesophyll’ pit fields and fewer ‘bundle sheath-bundle
sheath’ pit fields compared with maize (Fig. 6; Table S2). Despite
sugarcane having larger bundle sheath cells than maize, this
resulted in a larger percentage of plasmodesmata pit field coverage

of ‘bundle sheath-mesophyll’ connections at 2.7% of the bundle
sheath cell surface area compared to the 1.9% observed in maize.
Only 0.3% of the sugarcane bundle sheath surface contained ‘bun-
dle sheath-bundle sheath’ pit fields compared to 1.0% in maize.
The area and percent coverage of plasmodesmata pit fields for
sugarcane mesophyll cells was similar to maize (Table 3).

Discussion

Trade-offs between SBF-SEM and LSM for determining
chloroplast size and shape

Studies that have looked at chloroplast size of C4 species used
light microscopy, confocal laser scanning microscopy, and trans-
mission electron microscopy, but the ability to identify the
volume of single chloroplast was limited (Stata et al., 2014;
Pignon et al., 2019; Maai et al., 2020). Additionally, variability
between studies can be large. For example, chloroplast length of
sugarcane has been reported as low as 4.83 μm while maize has
been reported as high as 43.14 μm (Du et al., 2019; Zhang
et al., 2021). Recently, SBF-SEM was proposed as a better
method for determining chloroplast volume, as Harwood
et al. (2020) showed extrapolating volume from 2D images, like
those from light microscopy or transmission electron microscopy,
was inaccurate. However, the Harwood’s study was limited to C3

species.

Fig. 3 Leaf cross sections obtained from
confocal laser scanning microscopy with the
Airyscan system (LSM). Upper panels show
maize (a) and sugarcane (b) leaf cross section
images with chloroplasts (magenta) and cell
wall (green). Lower panels show the 3D
visualization of maize (c) and sugarcane (d)
bundle sheath chloroplasts (blue) and
mesophyll chloroplasts (magenta). Bars,
20 μm.
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In this experiment, we tested two different microscopy meth-
ods, SBF-SEM and LSM, for estimating chloroplasts volume of
two C4 species, maize and sugarcane. SBF-SEM showed clear
images of chloroplasts but was time- and labor-intensive. Addi-
tionally, shrinkage of the sample during SBF-SEM preparation
may occur and should be considered (Fig. S5; Khoshravesh
et al., 2022). LSM method had easy sample preparation, quick
image acquisition and analysis. However, it was not able to differ-
entiate individual chloroplasts if they were tightly packed. This
was because the software merged multiple chloroplasts into a sin-
gle object during 3D reconstruction, which led to large variation
of chloroplast parameters when using LSM. Even when cutoffs

were used to exclude erroneously low and high volumes, it was
unclear that a reasonable distribution of individual chloroplasts
volumes was observed. Pignon et al. (2019) used the same LSM
method to determine total chloroplast volume per unit leaf area.
We suggest that while this LSM method is suitable for total
chloroplast volume, it does not suitably measure individual chlor-
oplast volumes.

Chloroplast and cell comparisons

In many 2D analyses of C4 species, mesophyll chloroplasts are
reported to be smaller than bundle sheath chloroplasts (Black Jr

Fig. 4 Histograms of mesophyll chloroplast volume distributions in maize (blue bars; a, c, e) and sugarcane (green bars; b, d, f) comparing two microscopy
methods. Upper panels (closed bars; a, b, c, d) show mesophyll chloroplast volume measured by confocal laser scanning microscopy with the Airyscan
system (LSM) for all objects identified by the software (a, b), or a subset (c, d) corresponding to expected values from serial block face scanning electron
microscopy (SBF-SEM) corrected for possible shrinkage during sample preparation. Lower panels (open bars; e, f) show mesophyll chloroplast volume mea-
sured by SBF-SEM.
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& Mollenhauer, 1971; Liu & Dengler, 1994; Muhaidat
et al., 2011). Our results in maize and sugarcane support the gen-
eralization of chloroplast size, with mesophyll chloroplast volume
being c. 35–50% smaller than those in the bundle sheath. When
compared to SBF-SEM data from Harwood et al. (2020), the
mesophyll chloroplast volume of maize and sugarcane in this
experiment was smaller than wheat but comparable to chickpea
(Fig. 2). Additionally, the maize and sugarcane volume-to-
surface area relationship observed here is similar to the measure-
ments of wheat and chickpea performed by Harwood
et al. (2020) when a triaxial ellipsoid with semi-axial lengths of a
= 2b= 6c is assumed (Fig. 2). This approximates the chloroplast
shape, but as Harwood et al. (2020) noted chloroplasts are better
described as flattened ovoid concaved disks.

C4 species are sometimes reported to have fewer mesophyll
chloroplasts per cell than bundle sheath chloroplasts perhaps to
allow adequate light penetration to bundle sheath cells (Black Jr
& Mollenhauer, 1971; Liu & Dengler, 1994; Muhaidat
et al., 2011). Our estimates of chloroplasts per cell were similar
between mesophyll and bundle sheath cells. Unfortunately, the
methods used here did not allow us to capture entire mesophyll
or bundle sheath cells and limited the number of cells that could
be analyzed. Using estimates for the length of cells from other
sources (Table S3; Fig. S7) and the count of chloroplasts per cell
observed in our SBS-SEM images, we estimate maize has 53

chloroplasts in both cell types, and sugarcane has 49 chloroplasts
per mesophyll cell and 62 chloroplasts per bundle sheath cell.
Given the approximate nature of these estimates, and that bundle
sheath cell volume is understood to vary considerably, we cannot
confirm mesophyll cells contain fewer chloroplasts than bundle
sheath cells. Additionally, our estimates for the volume of a cell
occupied by chloroplasts, up to 70% of bundle sheath cell
volume and 50% of mesophyll cell volume, are higher than pre-
viously reported. Pignon et al. (2019) estimated 8–14% in meso-
phyll cells and 15–25% in bundle sheath cells in four C4 species.
Similarly, Stata et al. (2014) reported that chloroplasts occupy
12% of cell area. These differences may be explained by 2D ana-
lysis limitations of previous studies, or by different environmental
conditions. For example, light intensity is reported to alter chlor-
oplast number per cell as well as their structure and arrangement
(Feng et al., 2019).

Mesophyll chloroplasts were located near plasmodesmata, in
the lobbed protrusions that facilitated the cell–cell connections.
While it is interesting that mesophyll chloroplasts were adjacent
to plasmodesmata possibly facilitating rapid metabolite transport
between cells, chloroplast location is likely dynamic as it has been
shown that C4 chloroplast move in response to light and other
stimuli (Maai et al., 2011, 2020). Similarly, Danila et al. (2016)
described the shape of maize mesophyll cells as highly lobed and
positioned irregularly with air spaces in between mesophyll cells.

Fig. 5 Example of 2D images and 3D
visualizations of bundle sheath and
mesophyll cell wall with plasmodesmata pit
fields in a sugarcane leaf sample. Panels (a–c)
show 2D images of plasmodesmata between
bundle sheath and mesophyll cells from the
xy-view (a), the yz-view (b), and the xz-view
(c). Black dotted circles indicate
plasmodesmata connecting ‘bundle sheath-
mesophyll’ in a 2D-view. Panel (d) shows a
3D visualization of bundle sheath with
plasmodesmata pit fields, and (e) shows a 3D
visualization of a mesophyll cell with
plasmodesmata pit fields. For (d, e), grey
color indicates cell walls, cyan color shows
plasmodesmata pit field area between
‘bundle sheath-bundle sheath’, magenta
color shows plasmodesmata pit field area
between ‘bundle sheath-mesophyll’, and
yellow shows plasmodesmata pit field area
between ‘mesophyll-mesophyll’. Magenta
lines indicate which pit fields connected the
bundle sheath and mesophyll cells shown.
BS, bundle sheath cell; M, mesophyll cell.
Bars, 5 μm.
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It is possible that our observed mesophyll cell shape was distorted
by the sample preparation for SBF-SEM (Khoshravesh
et al., 2022); however, Danila et al. (2016) used different meth-
ods. This mesophyll cell shape is likely functionally important.
The protruding lobes form cell–cell connections and the thinner

cell diameters between the lobes allows for intercellular airspace,
which is necessary for CO2 diffusion within the leaf mesophyll.

Being able to capture entire cell volumes is important for accu-
rate characterization of these traits. Here, we used a slice depth of
0.05 μm over 500 slices, for a total of 25 μm, which failed to

Fig. 6 3D visualization of a bundle sheath and mesophyll cell with plasmodesmata pit fields in maize (a, b) and sugarcane (c, d). Panels (a, c) show the xz-
view, (b, d) show the yz-view. Not all cells in the image were reconstructed for the 3D view in order to show plasmodesmata on the cell surfaces. Grey and
dark grey colors indicate mesophyll and bundle sheath cell walls, and cyan color shows plasmodesmata pit field area between ‘bundle sheath-bundle
sheath’, magenta color shows plasmodesmata pit field area between ‘bundle sheath-mesophyll’, and yellow shows plasmodesmata pit field area between
‘mesophyll-mesophyll’. Bars, 10 μm.

Table 2 Maize and sugarcane bundle sheath and mesophyll cell parameters obtained from the serial block face scanning electron microscopy (SBF-SEM)
measurements (entire cells were not observed).

Type
Observable volume
of cell (μm3)

Observable surface
area of cell (μm2)

Chloroplast count in
observed volume

Chloroplast volume in
observed volume (μm3)

Cell volume occupied
by chloroplast (%)

Maize
Bundle sheath 1603.2� 496.3 1180.4� 196.2 25.7� 5.8 1010.5� 103.4 70.8� 13.5
Mesophyll 1627.4� 240.9 1557.5� 180.6 26.2� 3.5 533.2� 121.9 33.1� 2.8

Sugarcane
Bundle sheath 3177.0� 936.4 1987.4� 358.6 23.0� 7.0 1778.9� 358.6 60.2� 7.6
Mesophyll 1158.9� 156.4 1295.5� 161.5 18.3� 1.4 543.5� 121.9 49.6� 4.0

Data are means � SE.
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capture an entire cell length. Cells are expected to be c. 50 μm
long (Danila et al., 2018). Increasing the slice depth to 0.1 μm
may capture entire cells but would limit analysis of smaller cell
structures. Switching to a paradermal, rather than a cross-
sectional view, and decreasing resolution may also allow for cap-
ture of entire cells.

Plasmodesmata comparisons

Plasmodesmata are critical for metabolite transport between cells,
especially for the coordination of the C3 and C4 photosynthetic
cycles that are spatially separated between bundle sheath and meso-
phyll cells in most C4 species. Previous attempts to quantify plas-
modesmata or related traits were based on transmission electron
microscopy (Gunning, 1978; Seagull, 1983; Botha, 1992), and
recently, Danila et al. (2016, 2018, 2019) developed a method to
combine 3D immunolocalization confocal microscopy with scan-
ning electron microscope. In this experiment, we investigated plas-
modesmata pit field area in maize and sugarcane using SBF-SEM
to understand how plasmodesmata area is three-dimensionally dis-
tributed in bundle sheath and mesophyll cells. While previous
research has mainly focused on plasmodesmata ‘bundle sheath-
mesophyll’ connections, we reported here that different patterns of
plasmodesmata pit fields between ‘bundle sheath-bundle sheath’,

‘bundle sheath-mesophyll’, and ‘mesophyll-mesophyll’ may occur
in a species-dependent manner.

Maize devoted about threefold more cell surface area to ‘bun-
dle sheath-bundle sheath’ plasmodesmata connection than sugar-
cane on a percentage basis (1% compared to 0.3%), and about a
third less surface area than sugarcane to ‘bundle sheath-
mesophyll’ connections on a percentage basis (1.8% compared to
2.7%). Even though interpretation is limited when comparing
only two species, our observations could suggest more metabolite
sharing among bundle sheath cells in maize than in sugarcane.
Danila et al. (2018) found that ‘bundle sheath-mesophyll’ plas-
modesmata area is different depending on C4 biochemical sub-
type. In the two species we investigated, maize operates both
NADP-ME and PEPCK pathways, while sugarcane operates only
the NADP-ME pathway (Wingler et al., 1999).

When modeling photosynthesis, plasmodesmata parameteriza-
tion can be useful. For example, Jenkins et al. (1989) estimated that
60% of CO2 leakage takes place through plasmodesmata. Wang
et al. (2014) used the length of the plasmodesmata pathway, the
‘bundle sheath–mesophyll’ cell interface per unit leaf area, the sur-
face fraction of plasmodesmata, and the diffusion coefficient for the
given metabolite to calculate the rate of metabolite movement
through plasmodesmata. Here, we presented pit field area, as we
were not able to consistently trace individual plasmodesmata
tubules between cells. Danila et al. (2016, 2018, 2019) has been
able to identify plasmodesmata density within pit fields and this
could be used to estimate plasmodesmata area from the pit field
area presented here, but ideally plasmodesmata density should be
determined within the same study. For SBF-SEM, plasmodesmata
traces may be lost between z-slices as the diameter of a typical plas-
modesmata is likely< 25 nm (Yan et al., 2019). By decreasing slice
depth and increasing resolution, we may be able to more accurately
trace individual plasmodesmata.

Conclusion

Here, we showed that LSM was unable to differentiate individual
chloroplast volumes in C4 leaf tissue. Individual chloroplast
volumes could be determined with SBF-SEM, but required large
time and labor investments, and sample shrinkage may distort
size estimates. Plasmodesmata pit fields were clearly visible in the
SBF-SEM images; however, more work is needed to capture
entire cells and individual plasmodesmata. This work represents
one of the first 3D reconstructions of C4 chloroplasts and cell
structures, advancing SBF-SEM methodologies with the aim to
better understand how cellular structures effect photosynthetic
performance.
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Table 3 Sum of all plasmodesmata pit field areas per observable portions
of cell in maize and sugarcane, for both bundle sheath and mesophyll cells
obtained from serial block face scanning electron microscopy (SBF-SEM)
images (entire cells were not observed).

Parameter

Species

Maize Sugarcane

Bundle sheath cell
Cell wall thickness (μm) 0.1� 0.0 0.6� 0.0
BS–BS PF area per observed portion of BS
(μm2)

11.5� 1.8 6.0� 1.1

BS–BS PF area per BS surface area (%) 1.0� 0.1 0.3� 0.1
BS–M PF area per observed portion of BS
(μm2)

25.3� 9.3 51.6� 4.8

BS–M PF area per BS surface area (%) 1.9� 0.5 2.7� 0.3
Total PF area per observed portion of BS
(μm2)

36.8� 10.8 57.6� 4.9

Total PF area per BS surface area (%) 3.0� 0.4 3.0� 0.4
Mesophyll cell
Cell wall thickness (μm) 0.1� 0.0 0.1� 0.0
M–BS PF area per observed portion of M
(μm2)

14.5� 2.8 15.0� 1.7

M–BS PF area per M surface area (%) 0.9� 0.1 1.2� 0.1
M–M PF area per observed portion of M
(μm2)

19.8� 3.0 16.8� 2.9

M–M PF area per M surface area (%) 1.2� 0.1 1.3� 0.1
Total PF area per observed portion of M
(μm2)

34.4� 5.6 31.9� 3.4

Total PF area per M surface area (%) 2.2� 0.2 2.5� 0.1

Data are means � SE. BS, bundle sheath; BS–BS, bundle sheath–bundle
sheath cell interface; BS–M, bundle sheath–mesophyll cell interface; M,
mesophyll; M–BS, mesophyll–bundle sheath cell interface; M–M,
mesophyll–mesophyll cell interface; PF, plasmodesmata pit field.
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Fig. S1Workflow for tracing plasmodesmata pit fields.
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Fig. S3 Attempted tracing of individual plasmodesmata through
the pit field in sugarcane.

Fig. S4 Chloroplast volume distribution in bundle sheath and
mesophyll cells.

Fig. S5 Comparison of bundle sheath cell diameter as deter-
mined by laser scanning microscopy and serial block face scan-
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